Monday, May 16, 2022

Easy_Question10 : Climbing Stairs

You are climbing a staircase. It takes n steps to reach the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

 

Example 1:

Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps

Example 2:

Input: n = 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

 

Constraints:

  • 1 <= n <= 45

Solution 1: Brute-Force Approach

Base cases:
if n == 0, then the number of ways should be zero.
if n == 1, then there is only one way to climb the stair.
if n == 2, then there are two ways to climb the stairs. One solution is one step by another; the other one is two steps at one time.

  • We can reach ith step in one of the two ways:
  1. Taking a single step from (i - 1)th step
  2. Taking a step of two from (i - 2)th step.
  • So, the total number of ways to reach ith step is equal to sum of ways of reaching (i - 1)th step and ways of reaching (i - 2)th step.

Time complexity: O(2^n) - since size of recursion tree will be 2^n
Space Complexity: O(n) - space required for the recursive function call stack.


class Solution { public int climbStairs(int n) { if(n <= 2) return n; else return climbStairs(n - 1) + climbStairs(n - 2); } }

Solution 2: Dynamic Programming

  • This similar to Solution1, but here we cache the intermediate results in an array for the performance improvement.
  • Let dp[i] denotes the number of ways to reach on ith step, then
    dp[i] = dp[i - 1] + dp[i - 2]

Time complexity: O(n)
Space Complexity: O(n)

Top-Down Approach

class Solution { int[] cache = new int[46]; public int climbStairs(int n) { if(n <= 2) return n; else if(cache[n] != 0) return cache[n]; else return cache[n] = climbStairs(n - 1) + climbStairs(n - 2); } }

Bottom-Up Approach:

class Solution { public int climbStairs(int n) { if(n <= 2) return n; int[] dp = new int[n + 1]; dp[1] = 1; dp[2] = 2; for(int i = 3; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n]; } }

Solution 3: Fibonacci Number

  • In the above approach of Solution2, we have used an array where dp[i] = dp[i - 1] + dp[i - 2]. It can be easily analyzed that dp[i] is nothing but ith Fibonacci number.
    Fib(n) = Fib(n - 1) + Fib(n - 2)
  • So now we just have to find nth number of the Fibonacci series having 1 and 2 as their first and second term respectively,
    i.e. Fib(1) = 1 and Fib(2) = 2.

Time complexity: O(n)
Space Complexity: O(1)

class Solution { public int climbStairs(int n) { if(n <= 2) return n; int a = 1; int b = 2; for(int i = 3; i <= n; i++) { int sum = a + b; a = b; b = sum; } return b; } }

You may also like

Kubernetes Microservices
Python AI/ML
Spring Framework Spring Boot
Core Java Java Coding Question
Maven AWS